Using Ant, JavaDoc, LOG4J, JUnit, and
DocBook together

Ashley J.SMills

<ugb5axm@s. bham ac. uk>
Copyright © 2002 The University Of Birmingham

Table of Contents

O T 1 oo [F o 1 o) o PP 1
1.1 Anexamplerun Of tNEPIOGIAIM ... iiue et e e e e e e e e e e e et et e e e e e et e e et e e et e e ean e eean e eanneeenns 1
P I 0 1=T e 0o =0 PP UPPPTRRPPIN 3
2.1 QUESHIONTIEEJBVA ... eteeetneeeeti ettt ettt ettt ettt e ettt et et oottt o et e bh e e et b e et e b e e et e b e e et et e e e et as 3
A Lo = g () VAT Y- DTSSR PP PTTR 6
I S = o P S PP UPTRPT 13
I gL @ 7N oo o = = 15
4.1. Identify.javasLogger ConfiguratioN FilEccouiiiiiiii e e e e e e e e e eanaeeaen 15
4.2. QuestionTreeTest.java'sLogger ConfiguratioN Filecouuuiiiiiiiiii e 16
LI I SN 7= V7 5 o P 17
6. The Documentation in XML DOCBOOKciiuiiiiiiiii ettt e e e et e e e e e et e e e e e et e e et e eeanaaeens 17
. TREANEBUIIAIIE ... e e ettt e et e e e e e et et e et e e e et e e et e eeaeeennes 18
A8 B 1= (o YA 10 11 = S 20
ST = = 1= o= PP 20

1. Introduction

This document is an attempt to unite the various programmer tools documented here [../tutorial shome.html]. The specific tools that
will be used in the devel opment of the program in thistutorial, will be:

* Ant[../ant/anthome.html]

» JavaDoc [../javadoc/javadochome.html]

o LOG4J[../logdj/logdjhome.html]

e JUnit [../junit/junithome.html]

DocBook [../docbooksys/dochooksyshome.html]

It will be assumed that you have read these documents. The program itself will be alittle game called "Identify" that | created
based on my memories of a program on the Acorn BBC micros we had at my middle school. More information about this com-
puter can be found at http://home.wanadoo.nl/jarod/museum/bbc.htm. The program constructs a binary tree which contains a
St ring asit'sroot. It can have left and right sub-trees which are the same type of binary tree.

Each root (apart from the leaves of the tree) contains ayes/no question such as"Isit abird?’, thisis presented to the user and the
users response is received and stored. If the user responds with yes then the left subtree is evaluated, if the user responds with no
then the right subtree is evaluated. Eventually the user will hit aleaf node, atree with no children. Thisis an identification node
which specifies an object in the form of a question such as"Isit aVVesper sparrow (Pooecetes gramineus)?'. The answer to this
guestion is special and if the user answers yes, the program will ask the user if they want to refine the identification. If the user an-
swers no, the program will ask the user to specify what the object was that they were trying to identify, it will then ask them to
specify aquestion that distinguishes between the object in the leaf node that failed to identify the object they were trying to iden-
tify and the object they were trying to identify, a transcript from use of the program should make this clearer:

1.1. An example run of the program

Is it living?

y
Is it a Tree?

../tutorialshome.html
../ant/anthome.html
../javadoc/javadochome.html
../log4j/log4jhome.html
../junit/junithome.html
../docbooksys/docbooksyshome.html
http://home.wanadoo.nl/jarod/museum/bbc.htm

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

n
VWhat is your Cbject? (be as specific as possible)

a tiger

Pl ease enter an question that could be used to distinguish between:
"Is it a Tree?"

and

"Is it atiger?"

Try to make the distinction as high-1evel as possible.
Phrase the question so that answering yes to it wll display:

"I's it a tiger?"
Is it an ani mal ?

The conputer wll ask:
"I's it an aninal ?"

Respondi ng yes will produce the question
"I's it a Tiger"
Respondi ng no will produce the question
"I's it a Tree"

I's this behaviour satisfactory? y/n
y

Wul d you like to play again? y/n

s it living?

s it an aninmal?
s it atiger?

s the question:

"Isit atiger?"

speci fic enough to pinpoint your object? y/n
n

Pl ease enter a question that will be displayed after
the user answers yes to:

Is it atiger?

For exanple, if the old question was "Is it fictional literature?"
and your object is a copy of "Romeo and Juliet" then

you could enter the question "Is it a Shakespeare play?"

Is it white with chocolate stripes and icy bl ue eyes?
What is your object?

a rare Wiite Bengal Tiger (Panthera tigris tigris)

G ve ne an object | can use if sonebody answers yes to
"I's it atiger?"

but no to

"I's it white with chocolate stripes and icy blue eyes?"
a Siberian (Anur) tiger (Panthera tigris altaica)

Wul d you like to play again? y/n

Is it living?

y . .

Is it atiger?

y

Is it white with chocolate stripes and icy bl ue eyes?

y

Is it a rare Wite Bengal Tiger (Panthera tigris tigris)?

y

I s the question:

"Is it arare Wite Bengal Tiger (Panthera tigris tigris)?”

speci fic enough to pinpoint your object? y/n
y

Correct identification

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

Whul d you like to play again? y/n
n

How it doesthisis pretty straightforward, when it encounters a tree with empty children (aleaf) it knows that either the user said
yes to the last identification question or said no. If the user said yes then the identification is correct and the program goes on to
ask whether or not the definition was sufficiently accurate or not. If the user said no then the identification is incorrect and the pro-
gram asks the user to define the object and provide a new, distinguishing question.

2. The Program

The program is composed of two components:

e (QuestionTree.java

* ldentify.java

2.1. QuestionTree. java

Quest i onTr ee. j ava isan implementation of a binary tree that provides the underlying structure for the | denti fy. j ava pro-
gram. The classis shown below and it can be downloaded here: QuestionTreejava [files/src/QuestionTreejava).

i nport org.apache. | og4j. Logger;
/

* %

* A question tree for a hierarchical identification nodel.

*

* I nplenmented as a binary tree, the root node is a <code>String</code>
* representing a question.

*

* <p>

* The left subtree is the tree that should be evaluated if the user
* answers yes to the question held in the root of the parent tree.

* </ p>

L

* <p>

* The right subtree is the tree that should be evaluated if the user
* answers no to the question held in the root of the parent tree.

* < >

* /p

* @uthor Ashley MIls

* @ersion 0.1

*

*/

public class QuestionTree {
private Logger |ogger = Logger.getLogger(QuestionTree.class);

private QuestionTree left, right;
private String root;

/**
* Creates a new, enpty <code>QJestionTree</code>.@
*
/
public QuestionTree() {
| ogger. debug(" Questi onTree() called");
root = null;
left = null;
right = null;

/**

* Creates a new <code>QuestionTree</code> with a root question.
*

* @aram String The root question.

*/

public QuestionTree(String root) {
| ogger. debug(" Questi onTree(String root) called");
this.root = root;
| eft = new QuestionTree();
ri ght = new QuestionTree();

/**

* Creates a new <code>QuestionTree</code> with a root question, a |eft
* sub- <code>Questi onTree</code> and a right sub-<code>QuestionTree</code>.
*

3

files/src/QuestionTree.java

together

* @aram String The root question.

* @aram QuestionTree The <code>QuestionTree</code> that should becone the left,
* "yes branch" of the <code>QuestionTree</code>.
*
*
*

@ar am QuestionTree The <code>Questi onTree</code> that should becone the right,
"no branch" of the <code>QuestionTree</code>.
*/
public QuestionTree(String root, QuestionTree left, QuestionTree right) {
| ogger . debug(" QuestionTree(String root, QuestionTree left, QuestionTree right) called");

this.root = root;
this.left = left;
this.right = right;
}
/**

* Sets the root question of the <code>QuestionTree</code> that the
* nethod was called from

*

* @aram String The question that shoul d become this <code>Questi onTree</code>s root question.
*/

public void setRoot(String root) {
| ogger. debug("set Root (String root) called");
this.root = root;

}

/**
* Sets the |left sub-<code>QuestionTree</code> of the <code>QuestionTree</code>.
*

* @aram QuestionTree The <code>QuestionTree</code> that should beconme the |left subtree.
*/

public void setLeft(QuestionTree left) {
| ogger. debug("set Left (QuestionTree left) called");
this.left = left;

}

/**
* Sets the right sub-<code>QuestionTree</code> of the <code>Questi onTree</code>.
*

* @aram QuestionTree The <code>Questi onTree</code> that should becone the right subtree.
*/
public void setR ght(QuestionTree right) {
| ogger. debug("set Ri ght (QuestionTree right) called");
this.right = right;
}

/**

* Returns the <code>QuestionTree</code>s root question.
*
* @eturn String The question defined in the root of this tree.
*/
public String getRoot() {
| ogger . debug("get Root () called");
return root;

/**
* Returns the left sub-<code>QuestionTree</code> of the <code>Questi onTree</code>.

*

* @eturn QuestionTree The | eft sub-<code>Questi onTree</code>.
*/
public QuestionTree getlLeft() {
| ogger. debug("getLeft() called");
return left;

/**
* Returns the right sub-<code>QuestionTree</code> of the <code>Questi onTree</code>.
*

* @eturn QuestionTree The right sub-<code>QuestionTree</code>.
*/
public QuestionTree getRight() {
| ogger. debug("get Ri ght () called");
return right;

}
/**

* Determi nes whether or not the <code>QuestionTree</code> is enpty.
*

* @eturn bool ean <code>true</code> if the <code>Questi onTree</code> is enpty
* and <code>f al se</ code> ot herwi se.
*/
publ i c bool ean i sEmpty() {
| ogger. debug("i sEnpty() called");
return root==null;

together

L1

/**

*

H 0% ok 3k % % ok 3k kX F 3k F X X %k F X X F

A question tree for a hierarchical identification nodel.

<p>

I mpl emented as a binary tree, the root node is a <code>String</code>
representing a question.

</ p>

<p>

The | eft subtree is the tree that should be evaluated if the user
answers yes to the question held in the root of the parent tree.

</ p>

<p>

The right subtree is the tree that should be evaluated if the user
answers no to the question held in the root of the parent tree.
</ p>

@ut hor Ashley MIls
@ersion 0.1

Quest i onTr ee. j ava contains JavaDoc for every method and constructor, thisis the JavaDoc for the entire class, notice the
use of HTML and the one line summary to start with. The author specified is "Ashley Mills' and the versionis"0.1". The
JavaDac output for this section can be seen below:

Figure 1. The JavaDoc output for thelisting above

Class QuestionTree

jawva. lang.Chiject

+-——-0uestionTree

publc class DQuestionTree
extends Ohiect

A question tree for a heirarchical identification maodel.

Implemented as a binary tree, the root node is a String representing a question,

The left subtree iz the tree that should be evaluated if the user answers ves to the question held in the root of the parent tree.

The right subtree 15 the tree that should be evaluated if the user answers no to the question held in the root of the parent tree.

public class QuestionTree {

private Logger |ogger = Logger.getLogger(QuestionTree.class);

private QuestionTree left, right;
private String root;

/**
* Creates a new, enpty <code>QuestionTree</code>.
*/
public QuestionTree()
| ogger . debug(" Questi onTree() called");

root = null;
left = null;
right = null;

2.2.

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

Notice that the logger isinstantiated using the name of the class Quest i onTr ee. cl ass. It would be inefficient to create a
new logger every time the constructors were called so Quest i onTr ee. j ava inheritsits logger from whichever class instan-

tiatesit. A logger statement can be seen in the QuestionTree constructor:

| ogger . debug(" Questi onTree() called");

The QuestionTree contains many logger statements, one for every method and constructor. The methods and constructors are
called many times during the execution of | denti fy. cl ass so the Level DEBUG was chosen instead of INFO, whichis
usually used to produce messages indicating the entering and/or leaving of methods, to reduce the number of messages being

produced. The logger level is set to INFO in the configuration file.

It is assumed that a basic knowledge of computer data structures is known so the program code should be self-documenting. For
those that need the relevant background information on binary trees, | suggest you read the binary tree handouts produced by Mar-
tin Escardo for the Introduction To Computer Science - B first year course at The University Of Birmingham, they can be found at

http://mww.cs.bham.ac.uk/~mhe/introductionb.html#ref:lectures.

Identify.java

I dentify.java providesthe part of the program that gets input from the user and constructs the QuestionTreg, it is too big to be
shown init's entirety here so only the main method is shown, the auxiliary functions will be shown and discussed separately later.

The program can be downloaded here: Identify.java [files/src/Identify.java)].

/** A program whi ch nodels a hierarchical question tree which is
extensible, it's purpose is to identify objects through a series

of yes/no questions.

* @uthor Ashley MIls
@ersion 0.1
*/

i mport java.io.*;
i mport org.apache. | og4j. Logger;
i mport org.apache. | og4j.xm . DOMConfi gur at or;
public class Identify {
private static BufferedReader reader;

* % X

*

private static Logger |ogger = Logger.getLogger(ldentify.class);

private static QuestionTree tree;
public static void main(String[] args) {

DOMConf i gurat or. confi gure("l og4j config.xm");
| ogger.info("Entering nmain");

reader = new BufferedReader (new | nput StreanReader (Systemin));

| ogger.info("Constructing initial QuestionTree");
tree = new QuestionTree("Is it living?",
new QuestionTree("ls it a tree?"),

new QuestionTree("ls it a conputer?")

QuestionTree currentTree = tree;
bool ean correctldentification = fal se,
finished = fal se, stopped = fal se, yes;

| ogger . debug("Starting outer while loop...");
whi | e(! st opped) {

out put ("");
| ogger . debug(" Transversing tree...");
whi [e(!finished)

out put (current Tree. get Root ()) ;

yes = yesOrNo();

| ogger. debug("yes = " + yes);

correctldentification = fal se;

if(yes) {
correctldentification = true;
if(currentTree.getlLeft().isEnmpty()) fini
el se currentTree = currentTree. getlLeft();
| ogger . debug("fini shed: "+finished);

} else {

if(currentTree.getRight().isEnpty()) finished=true;

el se currentTree = currentTree.getRight();E’

}
}

if(correctldentification) {

shed=t r ue;

http://www.cs.bham.ac.uk/~mhe/introductionb.html#ref:lectures
files/src/Identify.java

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

L1

output("T's the question:\n");
output (" \""+currentTree.getRoot()+"\"\n");
out put ("speci fi c enough to pinpoint your object? y/n");

yes = yesOrNo();
if(yes) {

out put ("\'nCorrect identification!");
} else {

refineLeaf Questi on(currentTree);

} else {
addNewObj ect ToTree(current Tree) ;
}

out put ("\nWoul d you like to play again? y/n");
yes = yesOrNo();

if(yes) {
current Tree = tree;
correctldentification = fal se;
fini shed = fal se;

} else stopped = true;

| ogger.info("Leaving nain");

/** A program whi ch nodels a hierarchical question tree which is

* extensible, it's purpose is to identify objects through a series
* of yes/no questions.

*

* @uthor Ashley MIls
* @ersion 0.1
*/
i mport java.io.*;
i mport org.apache. | og4j. Logger;
i mport org. apache. | og4j . xm . DOMConf i gur at or ;
public class ldentify {
private static BufferedReader reader;
private static Logger |ogger = Logger.getlLogger(ldentify.class);
private static QuestionTree tree;
public static void main(String[] args) {
DOMConf i gur at or . confi gure("l og4j config.xm");
| ogger.info("Entering main");
reader = new BufferedReader (new | nput St r eanReader (Systemin));

Some JavaDoc is present at the top of the program, this will not be used by any external programs as JavaDoc will not be
generated for this class since it contains no public methods. The JavaDoc shown isjust for persons inspecting the program
code. The import statements import the classes used in the program. A BufferedReader is declared, thiswill be used to get
input from the user. A logger is created with the name of the class and the QuestionTreeis declared so it can be accessed by
the whole class. The main method sees the configuration of the logger viaa DOMConfigurator, this allows the use of an ex-
ternal configuration file for the logger, marked up in XML. There are also a couple of logger statements present.

| ogger.info("Constructing initia
tree = new QuestionTree("ls it |
new QuestionTree("ls i
s i

new QuestionTree("l

I QuestionTree");
i ving?",

t atree?"),

t a computer?")

)

Thereis alog message, followed by the construction of a QuestionTree, thisis the QuestionTree that will always point to the
root tree of the whole QuestionTree. The tree construction section defines a QuestionTree with the root question "Isit living?
When thisis used later on, if the user answers yes to the question "Isit living?', the user will be asked the question "Isit a
Tree", if the user answers no to the question "Isit living?', the user will be asked the question "Isit a Computer?'. Hereisa
diagram, which illustrating this:

Figure 2. Theinitial QuestionTree

together

Is it living?

NO

Is it atree? Is it acomputer?
(3]

QuestionTree currentTree = tree;
bool ean correctldentification = fal se,
finished = fal se, stopped = fal se, yes;

| ogger . debug("Starting outer while loop...");
whi | e(! st opped) {

output("");
| ogger. debug(" Transversing tree...");
whi I e(!finished) {

out put (current Tree. get Root ());

yes = yesOrNo();

| ogger . debug("yes = " + yes);

correctldentification = fal se;

if(yes) {
correctldentification = true;
if(currentTree.getlLeft().isEnpty()) finished=true;
el se currentTree = currentTree. getLeft();
| ogger . debug("finished: "+finished);

} else {
if(currentTree.getRi ght().isEnpty()) finished=true;

) el se currentTree = currentTree. getRight();

}

if(correctldentification) {
output ("I's the question:\n");
output (" \""+currentTree.get Root ()+"\"\n");
out put ("speci fic enough to pinpoint your object? y/n");

yes = yesOrNo();
if(yes) {

out put ("\'nCorrect identification!");
} else {

refi neLeaf Questi on(currentTree);

} else {
addNewObj ect ToTree(current Tree) ;
}

out put ("\'nWoul d you like to play again? y/n");
yes = yesOrNo();

if(yes) {
currentTree = tree;
correctldentification = fal se;
fini shed = fal se;

} else stopped = true;

Thisis where the construction and modification of the QuestionTree occurs the first thing that happensis some variables are
initialised:

QuestionTree currentTree = tree;
bool ean correctldentification = false,
finished = fal se, stopped = fal se, yes;

A new QuestionTree is created that is a pointer to the root node of the overall tree, it is called currentTree, currentTree will
vary asthe treeistransversed so that currentTree always pointsto the last question asked. The other variables initialised are
boolean, and control things like loops and whether certain paths of the program are executed. Below the initialisation section
isalargeloop controlled via the stopped variable:

together

whi | e(! st opped) {

6utput("\n\/\bul d you like to play again? y/n");
yes = yesOrNo();
if(yes) {

currentTree = tree;
correctldentification = fal se;
finished = fal se;

} else stopped = true;

When the user enters no to the question "Would you like to play again?', stopped is set to true causing the outer loop to be
be broken and subsequently, the program to terminate. The contents of this outer loop can be broken up into two sections, the
first controls the transversal of the QuestionTree and the second controls the modification of the tree upon reaching a leaf,
here isthefirst section:

output("");
| ogger . debug(" Transversing tree...");
whi I e(!finished) {

out put (current Tree. get Root ());

yes = yesOrNo();

| ogger . debug("yes = " + yes);

correctldentification = fal se;
if(yes) {
correctldentification = true;
if(currentTree.getlLeft().isEnpty()) finished=true;
el se currentTree = currentTree. getLeft();
| ogger . debug("fini shed: "+finished);
} else {
if(currentTree.getRi ght().isEnpty()) finished=true;
el se currentTree = currentTree. getRight();

Thefirst line outputs an empty line for formatting reasons. The while loop is controlled by the variable finished which was
set to false in the initialisation section described above. The loop prints out the root of the current tree, which is a question,
and gets the users response to this question via the yesOrNo() method. The boolean variable correctldentification is set to
false and the users response to the printed question is evaluated.

If the user said yes to the printed question then correctldentification is set to true, thisisincase currentTree happensto be a
leaf, whereupon if the user says yes then the object they are looking for has been correctly identified (as much asis possible
anyway). A "yes"' answer requires that the transversal of the tree continues at the left subtree but first the left subtreeis
checked for emptiness. If the left subtree is empty then currentTreeis aleaf node and transversal must stop, so finished is set
to true. If the left subtreeit is not empty then currentTreeis set to the left subtree.

If the user said no to the printed question then the right subtree must be evaluated, but first the right subtree is checked for
emptiness, because if it isempty it is aleaf node and transversal of the tree must stop, finished is set to true to accomplish
this. If the right subtree is not empty then currentTreeis set to the left subtree.

The loop goes round and round (that is generally what loops do ;)), transversing the question tree in response to the users an-
swers to the questions printed. Eventually aleaf node is encountered, transversal of the tree terminates and program control
flowsto the next section:

if(correctldentification) {
output ("I's the question:\n");
output (" \""+currentTree.getRoot ()+"\"\n");
out put ("specific enough to pinpoint your object? y/n");

yes = yesOrNo();
if(yes) {

out put ("\'nCorrect identification!");
} else {

refineLeaf Questi on(currentTree);

} else {
addNewObj ect ToTree(current Tree) ;
}

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

If the item was correctly identified (if the user said yes to a question that was leaf), correctldentification will be true. The
user is asked whether the question they answered yes to was specific enough to pinpoint the object they were trying to iden-
tify. If the user saysthat it was specific enough, by answering yes, the program outputs "Correct identification!", if the user
says no then refineLeafQuestion(currentTree) is called to refine the question. For an example of this see the section entitled
An example run of the program.

If the item was not correctly identified (if the user said no to a question that was aleaf) correctldentification will be false and
the alternative of theif..then..else structure will be executed. The method addNewObjectToTre(currentTree) is called to add
anew object to the tree since the object the user was trying to identify was not found.

Let'stake alook at the refinel eafQuestion method which is called when an object has been identified as much as possible (down
to aleaf node) but the identification is not specific enough:

private static void refineLeaf Question(QuestionTree currentTree) {
| ogger.info("Entering refineLeaf Questi on(QuestionTree currentTree)");
out put ("\' nPl ease enter a question that will be displayed after");
out put ("the user answers yes to:\n");

out put (current Tree. get Root () +"\n");

out put ("For exanple, if the old question was \"Is it fictional literature?\"");
out put ("and your object is a copy of \"Roneo and Juliet\" then you");
output("could enter the question \"Is it a Shakespeare play?\"\n");

String usersQuestion = getString();
out put ("\'nWhat is your object?\n");
String usersYesChject = getString();

output ("\nG@ve nme an object | can use if sonebody answers yes to");
output ("\""+currentTree. getRoot ()+"\"");

out put ("but no to");

out put ("\""+usersQuestion+"\"\n");

String usersNoObject = getString();

current Tree. set Lef t (
new QuestionTree(usersQestion,
new QuestionTree("ls it "+usersYesCbject+"?"),
new QuestionTree("ls it "+usersNoQbject+"?")

)i
| ogger.info("Leaving refineLeaf Questi on(QuestionTree currentTree)");

The output statements make it pretty clear what is going on, essentially this method can be summarised to:

String usersQuestion
String usersYesOhj ect
String usersNoQbj ect
current Tree. set Left(
new QuestionTree(usersQestion,
new QuestionTree("ls it "+usersYesCbject+"?"),
new QuestionTree("ls it "+usersNoQbject+"?")

getString();
getString();
getString();

)

A new question is got from the user which will become the left subtree of the question that was not specific enough to identify the
object the user was looking for. So if the not-specific-enough question was"Isit abook?', and the users object is Rowan-
"Robinson Cosmology SECOND EDITION" the user might specify the new question "Isit a scientific book?', the user isthen
asked to specify the object, assume that the user specifies "Rowan-Robinson Cosmology SECOND EDITION". The user isthen
asked to specify an alternative to the object they just specified that could be used as the no-branch for the question they just speci-
fied. The object hasto be in context, since this tree will become the left subtree of the tree with the question "Isit abook?'. In this
case the user would want to specify some kind of non-scientific book, for example the children's book "Enid Blyton - The En-
chanted Wood". After the user has provided the necessary details, the left subtree is set to a new QuestionTree with the users ques-
tion as root, the users object as the yes-branch and the users alternative object as the no-branch, the diagrams below illustrate this:

Figure 3. Part of the QuestionTree before refinement

10

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

Is it a book?

NO

Is this specific What is it?
enough?

Figure 4. Thesame part of the QuestionTree after refinement

Is it a book?

v

Is it a scientific What is it?
book?

AN

Is it Rowan-Robinson Is it Enid Blyton -
Cosmology SECOND The Enchanted Wood?
EDITION??

AN AN

Is this specific What is it? Is this specific What is it?
enough? enough?

Let'stake alook at the addNewObjectToTree method which is called when the tree has been transversed to aleaf node but the
identification of the users object has failed. (the user said no to a question in aleaf node):

private static void addNewChj ect ToTree(Questi onTree currentTree) {
| ogger.info("Entering addNewCbj ect ToTree(Questi onTree currentTree)");
String newQuestion = ""; bool ean goodAnswer = fal se;
out put ("What is your object?\n");

String usersCbject = getString();

11

together

whi T e(TgoodAnswer) {
out put ("\ nPl ease enter a question that could be used to distinguish between:\n");

output ("\"" + currentTree.getRoot() + "\"");
out put ("and");
output ("\"Is it " + usersQoject + "?2\"\n");

output ("Try to make the distinction as high-level as possible.");
out put (" Phrase the question so that answering yes to it will display:\n");

output ("\"Is it " + usersCbject + "2\"\n");
newQuestion = getString();

out put ("\'nThe conputer wll ask:");
out put ("\"" +newQuestion+"\"\n");

out put ("Respondi ng yes will produce the question:");
output("\"Is it " + usersChject + "\"");

out put ("Responding no will produce the question:");
output ("\"" + currentTree.getRoot() + "\"\n");

output ("I's this behaviour satisfactory? y/n");

goodAnswer = yesOrNo();
}

String tenp = current Tree. get Root () ;

current Tree. set Root (newQuesti on);

current Tree. setLeft (new QuestionTree("ls it "+usersChject+"?"));
current Tree. set Ri ght (new QuestionTree(tenp));

| ogger.info("Leaving addNewCbj ect ToTree(Questi onTree currentTree)");

This can be summarised to:

fal se;
getString();

bool ean goodAnswer
String usersObject
whi | e(! goodAnswer) {

newQuestion = getString();

output ("I's this behaviour satisfactory? y/n");

goodAnswer = yesOrNo();

String tenp = current Tree. get Root () ;

current Tr ee. set Root (newQuesti on);

current Tree. setLeft (new QuestionTree("ls it "+usersChject+"?"));
current Tree. set Ri ght (new Questi onTree(tenp));

goodAnswer is set to false so that the while loop will be processed, the user is asked to specify the object they are trying to identify
and thisis stored in the variable usersObject. The loop is entered, which asks the user for a question that should distinguish be-
tween the object the user is trying to identify and the fal se identification that the QuestionTree provided. The new state of the tree
isdisplayed and the user is asked if the behaviour is satisfactory, the users response to this question is used to set the goodAnswer
variable which controls the loop.

After the user enters and confirms a question the question that failed to identify the object is replaced with the new question the
user provided and the object the user provided becomes the left subtree of this question, the right subtree is set to the original ques-
tion which failed to identify the object the user was trying to identify. For example, the original question could have been"Isit a
cat?' and perhaps the user was trying to identify "adog", the user could provide the new question "Is it known as mans best
friend?’ thiswould replace "Isit acat?", the yes-branch would become "Is it adog?' and the no-branch would become "Isit a
cat?, the diagrams below illustrate this:

Figure5. Part of the QuestionTree before adding a new question

12

together

Is it a cat?

AN

Is this specific What is it?
enough?

Figure 6. The same part of the QuestionTree after adding a new question

Is it kKnown as mans best friend?

Y e

Is it a dog? Is it a cat?

Y el

Is this specific What is it? Is this specific What is it?
enough? enough?

Therest of the methods in the program are auxiliary methods like output which outputs strings and getString which gets a string
from the user, these need no explaining, examine the source code for more information.

3. The Test Harness

Since the QuestionTree is the underlying data structure that the program works with, it is essential that this part works exactly asis
desired hence atest harness was created for it using JUnit. The test program is shown below:

import junit.framework. *;

i mport org. apache. | og4j . Logger;

i mport org. apache. | og4j.xnm . DOMConf i gur at or;

public class QuestionTreeTest extends Test Case {
private Logger |ogger = Logger.getlLogger(QuestionTreeTest.class);
private QuestionTree treel, tree2, trees3;

public QuestionTreeTest(String nane) {

super (nane) ;

DOMConf i gurat or. confi gure("l og4j config2.xm");
}

protected void setUp() {
| ogger.info("Entering setUp()");
treel = new QuestionTree("ls it living?",

13

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

new QuestionTree("Is it a WIT?"),
new QuestionTree("ls it a brick?")

tree2 = new QuestionTree("ls i
| ogger.info("Leaving setUp()")
}

public void testConstructor() {
| ogger.info("Entering testConstructor()");
QuestionTree tree3 = new QuestionTree("ls it |iving?");
assertEqual s("Is it living?", tree3.getRoot());
| ogger.info("Leaving testConstructor()");

t living?");

public void testGetRoot() {
| ogger.info("Entering testGetRoot()");
assertEqual s("ls it living?", tree2.getRoot());
| ogger.info("Leaving testGetRoot()");

public void testGetlLeft() {
| ogger.info("Entering testGetLeft()");
assertEqual s("lIs it a Wlf?", treel.getlLeft().getRoot());
| ogger.info("Leaving testGetLeft()");

public void testGetR ght() {
| ogger.info("Entering testGetRight()");
assertEqual s("lIs it a brick?", treel.getR ght().getRoot());
| ogger.info("Leaving testGetRight()");

public void testSetRoot() {
| ogger.info("Entering testSetRoot()");
treel.setRoot("Is it alive?");
assertEqual s("Is it alive?", treel.getRoot());
| ogger.info("Leaving testSetRoot()");

}

public void testSetLeft() {
| ogger.info("Entering testSetLeft()");
treel.setLeft(new QuestionTree("ls it a Dog?"));
assertEqual s("ls it a Dog?", treel.getlLeft().getRoot());
| ogger.info("Leaving testSetLeft()");

}

public void testSetR ght() {
| ogger.info("Entering testSetRight()");
treel. set Ri ght (new QuestionTree("ls it a concrete bl ock?"));
assertEqual s("Is it a concrete bl ock?", treel.getRight().getRoot());
| ogger.info("Leaving testSetRight()");

}

public void testlsEmpty() {
| ogger.info("Entering testlsEnpty()");
assertEqual s(true, tree2.getlLeft().isEnpty(
assertEqual s(true, tree2.getRight().isEmty
| ogger.info("Leaving testlsEnpty()");

junit.framework.* isimported so that the class can extend TestCase. org.apache.log4j.Logger and

org.apache.log4j.xml.DOMConfigurator are imported so that alogger can be setup. The logger is setup in the QuestionTreeTest
constructor of the class. A different logfile is used for logging than the one used for the logging from | dent i fy. j ava. The con-

figuration file for thelogger is| og4j confi g2. xm . Thelogger has a priority of DEBUG.

All the methods of Quest i onTr ee. j ava aretested, they appear to be tested in a particular order but JUnit uses reflection and
cannot guarantee the order that tests are executed in hence the program just displayslogical grouping. The constructors are tested
first (implicitly in the setUp method, and via constructor Test) followed by the get methods, the set methods and finally the

isEmpty method is tested. The following junit.framework.assert methods are used:

» public static void assertEqual s(boolean expected, boolean actual)
To test the isEmpty() method.
* public static void assertEqual s(java.lang.Object expected, java.lang.Object actual)

To test al therest of the methods

14

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

It is possible to use assertTrue(boolean condition) to test the strings for equality in the program's tests instead of assertE-
quals(java.lang.Object expected, java.lang.Object actual). The latter can be used to compare any two objects that implement the
equals method. The former does exactly the same thing as the latter since it actually uses the equals method itself.

The tests will be integrated into an Ant script later but one can manually run the tests by issuing these commands:

java junit.textui.Test Runner QuestionTreeTest

The output produced from thisis:

K (8 tests)

It isinteresting to note here that before the logging statements and code were implemented into this class, the output from running
the test was:

.1 og4j : WARN No appenders coul d be found for |ogger (QuestionTree.class).
| 0g4j : WARN Pl ease initialize the | og4j system properly.

K (8 tests)

The logdj warnings occur because there was no logger for Quest i onTr ee. j ava to inherit. Usually Quest i onTr ee. j ava inher-
its and uses the logger created by QuestionTreeTest. The time for the log-free test is about (it varies dlightly) 0.06 seconds less
than it iswith loggers added. Thisis an indication of the kind of performance hit one gets when using the kind of logger described
inl og4j confi g2. xnl and the kind of logging system used here. For more information about the loggers used by the test har-
ness, including description of the output, see Quest i onTr eeTest . j ava's Logger Configuration File.

4. The LOG4J Loggers

There are two Log4J loggers used in this program, oneis used by the program | dent i fy. j ava and the other is used by the pro-
gram Quest i onTreeTest . j ava. Questi onTr ee. j ava inherits the logger from the class it isinstantiated from. Both loggers
are instantiated in the same manner; the logger is declared globally in the class and named after the classit is called from then the
logger is configured viaan external XML file, referenced by DOMConfigurator.

4.1. 1dentify.java's Logger Configuration File

The configuration fileused by | dent i fy. j ava can be downloaded here: logdjconfig.xml [files/src/logdjconfig.xml], it is shown
below:

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE | og4j : confi guration SYSTEM "I og4j.dtd">

<l og4j : configuration xm ns:|og4j="http://]akarta.apache.org/log4j/">

<appender nane="appender" cl ass="org. apache.| og4j . Fi | eAppender">
<param nane="Fi |l e" val ue="ldentify.log"/>
<par am nane="Append" val ue="fal se"/>
<l ayout cl ass="org. apache.| og4j . PatternLayout">

<par am nane="Conver si onPattern" val ue="[%l{HH. mm ss}] [% 12C] [%] - %tm"/>
</ | ayout >
</ appender >
<r oot >
<priority value ="info"/>
<appender -ref ref="appender"/>
</root >

</l og4j : configuration>

A FileAppender is created that outputs directly (non-appending) to thefilel denti fy. | og. The Layout is set as PatternLayout
and the ConversionPattern is setup so that messages are output like this:

[13:07:15] [ldentify] [INFQ - Constructing initial QuestionTree

15

files/src/log4jconfig.xml

together

Thefields are "%d{ HH:mm:ss}" for the date in the format shown above, "%-12C" to output the fully qualified classname, right-
padded to 12 characters, "%p" outputs the logger priority (Level), "%m" outputs the logging message and "%n" outputs a newline.
The priority is set to INFO

A typical log of running the Identify program is shown below:

[13:36:05] [ldentify] [INFQ - Entering main

[13:36:05] [ldentify] [INFQ - Constructing initial QuestionTree

[13:36:10] [ldentify] [INFQ - Entering refineLeaf Question(QuestionTree currentTree)
[13:36:38] [ldentify] [INFQ - Leaving refineLeaf Questi on(QuestionTree currentTree)
[13:37:02] [ldentify] [INFQ - Entering addNewObj ect ToTree(Questi onTree current Tree)
[13:37:57] [ldentify] [INFQ - Leaving addNewObj ect ToTree(Questi onTree current Tree)
[13:38:06] [ldentify] [INFQ - Leaving main

If the Level is set to DEBUG, the amount of messages quickly becomes large so an example will not be shown here, instead, one
may be downloaded from here IdentifyDebug.log [files/| dentifyDebug.log].

4.2. QuestionTreeTest.java'S Logger Configuration File

The configuration fileused by | dent i fy. j ava can be downloaded here: logdjconfig2.xml [files/src/logdjconfig2.xml], itis
shown below:

<?xm version="1.0" encodi ng="UTF-8" ?>
<! DOCTYPE | 0og4j : confi guration SYSTEM "l og4j.dtd">

<l og4j : configuration xm ns:|og4j="http://]akarta.apache.org/log4j/">

<appender nane="appender" cl ass="org. apache. | og4j . Fi | eAppender">
<param nane="Fil e" value="qtreetest.| og"/>
<par am nanme="Append" val ue="fal se"/>
<l ayout cl ass="org. apache. | og4j.PatternLayout">
<par am nanme="Conversi onPattern" val ue="[%{HH nm ss}] [% 16C] [%5p] - %im"/>
</l ayout >
</ appender >

<r oot >
<priority value ="debug"/>
<appender -ref ref="appender"/>
</root >

</l og4j: configuration>

A FileAppender is created that outputs directly (non-appending) to thefileqt r eet est . | og. The Layout is set as PatternLayout
and the ConversionPattern is setup so that messages are output like this;

[13:56:49] [QuestionTreeTest] [INFO] - Entering setUp()

At first sight, it looks identical to the output produced using | og4j confi g. xni , but there is one difference, instead of using
"%-14C" to output the fully qualified classname right-padded to 12 characters, "%-16C" is used to output the fully qualified class-
name right-padded to 16 characters because the classnamesin use are alittle bit longer. The output log produced when running
Quest i onTreeTest . j ava asaJUnit set of testsis quite long so will not be shown in this document, instead, it can be down-
loaded here: gtreetest.log [files/qgtreetest.log].

The output produced if the Level is changed to INFO is not that long and is shown below:

14:10: 36 QuestionTreeTest INFO] - Entering setUp()

14: 10: 36 QuestionTreeTest INFO] - Leaving setUp()

14: 10: 36 QuestionTreeTest INFO] - Entering testConstructor()
14:10: 36 QuestionTreeTest INFO] - Leaving testConstructor()
14: 10: 36 QuestionTreeTest INFO] - Entering setUp()

14: 10: 36 QuestionTreeTest INFO] - Leaving setUp()

14: 10: 36 QuestionTreeTest INFO] - Entering testGetRoot ()
14:10: 36 Questi onTreeTest INFO] - Leaving testGetRoot()

14: 10: 36 QuestionTreeTest INFO] - Entering setUp()

14:10: 36 Questi onTreeTest INFO] - Leaving setUp()

14:10: 36 Questi onTreeTest INFO] - Entering testGetLeft()
14:10: 36 QuestionTreeTest INFO] - Leaving testGCetlLeft()
14:10: 36 QuestionTreeTest INFO] - Entering setUp()

14:10: 36 QuestionTreeTest INFO] - Leaving set Up()

14:10: 36 QuestionTreeTest INFO] - Entering testGetRight()

16

files/IdentifyDebug.log
files/src/log4jconfig2.xml
files/qtreetest.log

together

Notice that the method setUp in Quest i onTr eeTest . j ava iscalled before every test, if tearDown had been used, this would be

called after every test.

5. The JavaDoc

The JavaDoc is produced by the Ant buildfile discussed in the section entitled The Ant Buildfile. The JavaDoc can be viewed on-
line at index.html [files/build/javadoc/index.html].

14:10: 36 QuestionTreeTest INFO] - Leaving testGetR ght()
14:10: 36 Questi onTreeTest INFO] - Entering setUp()
14:10: 36 Questi onTreeTest INFO] - Leaving set Up()

14:10: 36 Questi onTreeTest INFO] - Entering testSetRoot ()
14:10: 36 Questi onTreeTest INFO] - Leaving testSetRoot ()
14:10: 36 Questi onTreeTest INFO] - Entering setUp()
14:10: 36 Questi onTreeTest INFO] - Leaving set Up()

14:10: 36 Questi onTreeTest INFO] - Entering testSetLeft()
14:10: 36 Questi onTreeTest INFO] - Leaving testSetlLeft()
14:10: 36 Questi onTreeTest INFO] - Entering setUp()
14:10: 36 QuestionTreeTest INFO] - Leaving setUp()

14:10: 36 QuestionTreeTest INFO] - Entering testSetRi ght()
14: 10: 36 Questi onTreeTest INFO] - Leaving testSetRight()
14: 10: 36 Questi onTreeTest INFO] - Entering setUp()

14: 10: 36 Questi onTreeTest INFO] - Leaving setUp()

14: 10: 36 Questi onTreeTest INFO] - Entering testlsEnpty()
14: 10: 36 QuestionTreeTest INFO] - Leaving testlsEnmpty()

6. The Documentation in XML DocBook

The DocBook documentation for the Identify program can be found here: Identify Documentation [files/identifyhome.html]. The

XML file from which the HTML and PDF versions are created from is shown below:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE article PUBLIC "-//QASI S//DTD DocBook XM. V4. 2//EN"
"http://ww. oasi s-open. or g/ docbook/ xm / 4. 2/ docbookx. dt d" >
<article id="ldentify">
<articl ei nfo>
<title>ldentify</title>

<sectl id="ldentify-Description"><title>Think OF An Object!</title>
<par a>

The Identify programbuilds a binary tree of questions that
</ par a>

<aut hor >

<firstname>Ashl ey</firstnane>

<sur nane>M | | s</ sur nane>

<affiliation>

<addr ess><enmi | >ug55axm@s. bham ac. uk</ enai | ></ addr ess>
</affiliation>
</ aut hor >

<copyri ght >
<year >2002</ year >

<hol der

</ copyri ght >
</articleinfo>

<par a>
The i npl enentati on consists of a separate class to provide the special
</ par a>

rol e="mail t o: ugb5axm@s. bham ac. uk">The University O Birm nghanx/ hol der >

<figure><title>An exanple of a QuestionTree</title>
<nmedi aobj ect >

<i mageobj ect ><i magedata fil eref ="qtreeexanpl e. png" fornmat ="PNG'/ ></i nageobj ect >

</ medi aobj ect >
</figure>

<para>lt can be constructed |ike this:</para>

<programisting>

QuestionTree tree =

"Is it li

new QuestionTree("ls
new QuestionTree("ls

vi ng?",

new QuestionTree("Does it |
i
i

t
t

new QuestionTree(

ve in the sea?",
whal e?"),

tiger?")

17

is transversed according to a users |

binary tree, called <filel

files/build/javadoc/index.html
files/identifyhome.html
files/identifyhome.html

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

new QuestionTree("Is it electrical hardware?"
new QuestionTree("ls it a conputer?"),
new QuestionTree("ls it a di anond?")

</p}ogran1isting>

<par a>
The <acronynrAPI </ acronynm> for QuestionTree is available fromhere: <ulink url="../javadoc/i ndex.
</ par a>

<screen>
<useri nput ><conmand>j ava</ conmand> | denti f y</ useri nput >
</ screen>
</sect 1>
<larticle>

Thefile starts with an articleinfo section which declares whom the author is, the copyright and contact information. The article

only has one section, which comes next and contains alittle bit of information about the Identify program including an example
QuestionTree in pictorial form and the source code used to creste the QuestionTree. The document ends by illustrating how the
program is executed.

7. The Ant Buildfile

The Ant buildfile used to build the whole project can be downloaded here: build.xml [files/build.xml]. The buildfile is also shown
below:

<?xm version="1.0""?>

<proj ect name="ldentify" default="all" basedir=".">
<property nanme="src" val ue="src"/>
<property name="buil d" val ue="build"/>

<target name="all" depends="cl ean, nkdir, program javadoc, docbook"/>

<target name="progrant description="Conpiles the program source">
<javac srcdir="${src}" destdir="${build}/bin"/>
</target>

<target name="javadoc" description="Creates the JavaDoc output">
<j avadoc sourcefiles="${src}/QuestionTree.java" destdir="${build}/javadoc"/>
</target>

<target nanme="docbook" descripti on="Creates the docunentation">

<exec executabl e="xsltproc">
<arg line="-o0 ${build}/docunentation/ldentify.htm"/>
<arg line="- -stringparamgenerate.toc 'article nop'"/>
<arg line="file:///c:/liblstylesheets/xhtm/custonxhtm .xsl"/>
<arg line="${src}/Identify.xm"/>
</ exec>

<exec executabl e="xsltproc">
<arg line="-o0 ${src}/ldentify.fo"/>
<arg line="- -stringparam generate.toc 'article nop'"/>
<arg line="file:///c:/1ibl/stylesheets/folcustonfo.xsl"/>
<arg line="${src}/Identify.xm"/>

</ exec>

<exec executabl e="fop">

<arg line="${src}/ldentify.fo"/>

<arg line="${build}/docunentation/ldentify.pdf"/>
</ exec>

<delete file="%{src}/ldentify.fo"/>
<copy file="${src}/ldentify.xm"
tofile="${buil d}/docunmentation/ldentify.xm"/>
<copy file="${src}/qgtreeexanpl e. png"
tofile="${buil d}/docunmentation/gtreeexanpl e. png"/>
</target>

<target name="cl ean" description="C eans the whol e project">
<del ete dir="${build}"/>
</target>

<target name="nkdir" description="Creates the required output directories">
<mkdir dir="${build}/bin"/>
<mkdi r dir="${build}/javadoc"/>
<mkdi r dir="${buil d}/docunmentation"/>
</target>
</ pr oj ect >

18

files/build.xml

Using Ant, JavaDoc, LOG4J, JUnit, and DocBook

The default target is all, which looks like this:

<target name="all" depends="cl ean, nkdir, program javadoc, docbook"/>

First, the target, clean is called:

<target name="cl ean" description="C eans the whol e project">
<del ete dir="${build}"/>
</target>

Thistarget cleans out the last build by deleting the build directory. Next in the list of depends for the all target is mkdir:

<target name="nkdir" description="Creates the required output directories">
<mkdi r dir="${build}/bin"/>
<mkdi r dir="${build}/javadoc"/>
<mkdi r dir="${buil d}/docunmentation"/>

</target>

This creates the output directories, notice that the directory bui | d is never explicitly created, thisis because Ant will create any
non-existent parent directories, for example:

<nkdir dir="dirl/dir2/dir3/dir4/dir5"/>

Would create the first four directories before creating the 5th directory. Next in thelist of depends for the all target is program:

<target nanme="prograni description="Conpiles the program source">
<javac srcdir="9%${src}" destdir="${build}/bin"/>
</target>

This compiles the program source code using the javac task. Next in the list of depends for the all target is javadoc:

<target name="javadoc" description="Creates the JavaDoc output">
<j avadoc sourcefil es="${src}/ QuestionTree.java" destdir="${build}/javadoc"/>
</target>

This creates the JavaDoc output by using Ant's builtin javadoc task. Next, and last, in the list of depends for the all target is doc-
book:

<t arget name="docbook" description="Creates the docunentation">

<exec execut abl e="xsltproc">
<arg line="-o0 ${build}/docunentation/ldentify.htm"/>
<arg line="- -stringparamgenerate.toc 'article nop'"/>
<arg line="file:///c:/libl/stylesheets/xhtm/custonxhtm .xsl"/>
<arg line="${src}/ldentify.xm"/>
</ exec>

<exec execut abl e="xsltproc">
<arg line="-0 ${src}/ldentify.fo"/>
<arg line="- -stringparamgenerate.toc 'article nop "/>
<arg line="file:///c:/libl/lstylesheets/folcustonfo.xsl"/>
<arg line="${src}/ldentify.xm"/>

</ exec>

<exec executabl e="fop">

<arg line="${src}/ldentify.fo"/>

<arg line="${buil d}/docunentation/ldentify.pdf"/>
</ exec>

<delete file="${src}/ldentify.fo"/>
<copy file="${src}/Identify.xm"
tofile="${build}/docunentation/ldentify.xm"/>
<copy file="${src}/qtreeexanpl e. png"
tofile="${buil d}/docunent ati on/ gtreeexanpl e. png"/ >
</target>

The Ant task exec is used to execute xsltproc which generates the HTML and FO output. The Ant task java is used to execute the
Java program FOP which generates the PDF output from the FO output produced by xsltproc. The temporary FO medium is
deleted and the source XML and image file are copied to the output directory. Notice that the creation of the FO and HTML with
xsltproc uses xslproc's ability to accept XSL parameters on the command line:

<arg line="- -stringparamgenerate.toc 'article nop "/>

19

together

The XSL parameter generate.toc is set to article nop so that the generation of tables of content in articles is suppressed.

7.1. Directory Structure

Directory structure of the project, after an Ant build, is shown below:

bui I d. xm
bui | d

bi n
I dentify.class
QuestionTree. cl ass
QuestionTreeTest. cl ass

docunent ati on
I dentify. htnl
| denti fy. pdf
I ndentify.xmnl
gt r eeexanpl e. png

j avadoc
al | cl asses-frane. htnl
al | cl asses-nofrane. ht n
const ant -val ues. ht
deprecated-list.htn
hel p-doc. htm
i ndex-al | . htm
i ndex. ht m
overvi ewtree. htm
package-1i st
packages. ht
QuestionTree. htm
styl esheet. css

Identify.java

I dentify.xm

| og4j config. xm

| og4j config2. xm

gt r eeexanpl e. png
QuestionTree. java
QuestionTreeTest.java

8. References

* Ant[../ant/anthome.html]

» JavaDoc [../javadoc/javadochome.html]
o LOG4J][../log4j/logdjhome.html]

e JUnit [../junit/junithome.html]

» DocBook [../docbooksys/docbooksyshome.html]

20

../ant/anthome.html
../javadoc/javadochome.html
../log4j/log4jhome.html
../junit/junithome.html
../docbooksys/docbooksyshome.html

	Using Ant, JavaDoc, LOG4J, JUnit, and DocBook together
	Table of Contents
	1. Introduction
	1.1. An example run of the program

	2. The Program
	2.1. QuestionTree.java
	2.2. Identify.java

	3. The Test Harness
	4. The LOG4J Loggers
	4.1. Identify.java's Logger Configuration File
	4.2. QuestionTreeTest.java's Logger Configuration File

	5. The JavaDoc
	6. The Documentation in XML DocBook
	7. The Ant Buildfile
	7.1. Directory Structure

	8. References

